Search Results for

    Show / Hide Table of Contents

    Class NodeMetrics.Types.EWMA

    The exponentially weighted moving average (EWMA) approach captures short-term movements in volatility for a conditional volatility forecasting model. By virtue of its alpha, or decay factor, this provides a statistical streaming data model that is exponentially biased towards newer entries.

    http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average

    An EWMA only needs the most recent forecast value to be kept, as opposed to a standard moving average model.

    Parameter 'alpha' decay factor, sets how quickly the exponential weighting decays for past data compared to new data, see http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average

    Parameter 'value' the current exponentially weighted moving average, e.g. Y(n - 1), or, the sampled value resulting from the previous smoothing iteration. This value is always used as the previous EWMA to calculate the new EWMA.

    Inheritance
    object
    NodeMetrics.Types.EWMA
    Implements
    IEquatable<NodeMetrics.Types.EWMA>
    Inherited Members
    object.Equals(object, object)
    object.GetType()
    object.ReferenceEquals(object, object)
    object.ToString()
    Namespace: Akka.Cluster.Metrics.Serialization
    Assembly: Akka.Cluster.Metrics.dll
    Syntax
    public sealed class NodeMetrics.Types.EWMA : IEquatable<NodeMetrics.Types.EWMA>

    Constructors

    | Edit this page View Source

    EWMA(double, double)

    Creates new instance of NodeMetrics.Types.EWMA

    Declaration
    public EWMA(double value, double alpha)
    Parameters
    Type Name Description
    double value

    The current exponentially weighted moving average, e.g. Y(n - 1), or, the sampled value resulting from the previous smoothing iteration.

    double alpha

    Decay factor, sets how quickly the exponential weighting decays for past data compared to new data, see http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average

    Properties

    | Edit this page View Source

    Alpha

    Declaration
    public double Alpha { get; }
    Property Value
    Type Description
    double
    | Edit this page View Source

    Value

    Declaration
    public double Value { get; }
    Property Value
    Type Description
    double

    Methods

    | Edit this page View Source

    Equals(EWMA)

    Declaration
    public bool Equals(NodeMetrics.Types.EWMA other)
    Parameters
    Type Name Description
    NodeMetrics.Types.EWMA other
    Returns
    Type Description
    bool
    | Edit this page View Source

    Equals(object)

    Declaration
    public override bool Equals(object obj)
    Parameters
    Type Name Description
    object obj
    Returns
    Type Description
    bool
    Overrides
    object.Equals(object)
    | Edit this page View Source

    GetAlpha(TimeSpan, TimeSpan)

    Calculate the alpha (decay factor) used in [[akka.cluster.EWMA]] from specified half-life and interval between observations. Half-life is the interval over which the weights decrease by a factor of two. The relevance of each data sample is halved for every passing half-life duration, i.e. after 4 times the half-life, a data sample’s relevance is reduced to 6% of its original relevance. The initial relevance of a data sample is given by 1 – 0.5 ^ (collect-interval / half-life).

    Declaration
    public static double GetAlpha(TimeSpan halfLife, TimeSpan collectInterval)
    Parameters
    Type Name Description
    TimeSpan halfLife
    TimeSpan collectInterval
    Returns
    Type Description
    double
    | Edit this page View Source

    GetHashCode()

    Declaration
    public override int GetHashCode()
    Returns
    Type Description
    int
    Overrides
    object.GetHashCode()

    Operators

    | Edit this page View Source

    operator +(EWMA, double)

    Calculates the exponentially weighted moving average for a given monitored data set.

    Declaration
    public static NodeMetrics.Types.EWMA operator +(NodeMetrics.Types.EWMA current, double xn)
    Parameters
    Type Name Description
    NodeMetrics.Types.EWMA current

    Current EWMA value

    double xn

    The new data point

    Returns
    Type Description
    NodeMetrics.Types.EWMA

    A new EWMA with the updated value

    Implements

    IEquatable<T>

    Extension Methods

    ObjectExtensions.IsDefaultForType<T>(T)
    ObjectExtensions.AsOption<T>(T)
    Extensions.AsInstanceOf<T>(object)
    In this article
    • githubEdit this page
    • View Source
    Back to top
    Contribute
    • Project Chat
    • Discussion Forum
    • Source Code
    Support
    • Akka.NET Support Plans
    • Akka.NET Observability Tools
    • Akka.NET Training & Consulting
    Maintained By
    • Petabridge - The Akka.NET Company
    • Learn Akka.NET